SYMMETRIC TENSORS OF THE SECOND ORDER WHOSE FIRST COVARIANT DERIVATIVES ARE ZERO*

BY

LUTHER PFAHLER EISENHART

1. Consider a Riemann space of the nth order, whose fundamental quadratic form, assumed to be positive definite, is written

$$ds^2 = g_{rs} dx^r dx^s \qquad (g_{rs} = g_{sr}),$$

where r and s are summed from 1 to n in accordance with the usual convention which will be followed throughout this paper. It is well known that the first covariant derivatives $g_{rs/t}$ are zero, where

(2)
$$g_{rs/t} = \frac{\partial g_{rs}}{\partial x^t} - g_{ra} \Gamma_s^a - g_{as} \Gamma_{rt}^a$$

and

(3)
$$\Gamma_{st}^{a} = \frac{1}{2} g^{ap} \left(\frac{\partial g_{sp}}{\partial x^{t}} + \frac{\partial g_{tp}}{\partial x^{s}} - \frac{\partial g_{st}}{\partial x^{p}} \right),$$

the function g^{ap} being the cofactor of g_{ap} in the determinant

$$(4) g = |g_{rs}|$$

divided by g. It is the purpose of this paper to determine the necessary and sufficient conditions that there exist a symmetric covariant tensor α_{rs} such that the first covariant derivatives $\alpha_{rs/t}$ are zero, or more than one such tensor.

2. Let α_{rs} denote the covariant components of any symmetric tensor of the second order. If ϱ_h is a root of the equation

$$|\alpha_{rs} - \varrho g_{rs}| = 0,$$

the functions λ_h^r (r = 1, ..., n) defined by

(6)
$$(\boldsymbol{\alpha}_{rs} - \boldsymbol{\varrho}_h g_{rs}) \lambda_h^r = 0 \qquad (s = 1, \dots, n)$$

^{*} Presented to the Society, April 28, 1923.

are the contravariant components of a vector. It is well known that the roots of (5) are real, and that if they are simple, the n corresponding vectors at a point are mutually orthogonal.* Moreover, if a root is of order m, equations (6) admit m sets of independent solutions, and any linear combination of them is also a solution. It is possible to choose m solutions so that the corresponding vectors at a point are mutually orthogonal, and thus from (6) obtain n sets of solutions so that the corresponding vectors at a point are orthogonal; that is,

(7)
$$g_{rs} \lambda_h^r \lambda_k^s = 0 \qquad (h, k = 1, \ldots, n; h \neq k).$$

Moreover, the components may be chosen so that

$$g_{rs} \lambda_h^r \lambda_h^s = 1 \qquad (h = 1, \dots, n),$$

that is, the vectors are unit vectors.

The curves in space whose direction at each point is defined by λ_h^r form a congruence of curves C_h . Thus equations (6) define an n-uple of congruences of curves, such that the curves of the n-uple through a point are mutually orthogonal.

The covariant components $\lambda_{h,r}$ of the vector h are given by

(9)
$$\lambda_{h,r} = g_{rs} \lambda_h^s, \quad \lambda_h^s = g^{rs} \lambda_{h,r},$$

and hence (7) and (8) are equivalent to

$$\lambda_{h,r} \lambda_k^r = \delta_{hk},$$

where

(11)
$$\delta_{hk} = 1 \text{ for } h = k; = 0 \text{ for } h \neq k.$$

The functions γ_{hii} defined by

$$\gamma_{hij} = \lambda_{h,r/s} \lambda_i^r \lambda_j^s,$$

where $\lambda_{h,r/s}$ is the covariant derivative of $\lambda_{h,r}$ with respect to x^s , are invariants; they are called *rotations* by Ricci and Levi-Civita.† They have shown that

(13)
$$\gamma_{hij} + \gamma_{ihj} = 0, \quad \gamma_{hhi} = 0 \quad (h, i, j = 1, ..., n).$$

^{*} Cf. these Transactions, vol. 25 (1923), p. 259.

[†] Mathematische Annalen, vol.54 (1901), p. 148; also, Wright, Invariants of Quadratic Differential Forms, Cambridge Tract, No. 9, p. 68.

From (12) we have

(14)
$$\lambda_{h,r/s} = \sum_{i,j}^{1...n} \gamma_{hij} \lambda_{i,r} \lambda_{j,s},$$

and since $g_{rs/t} = 0$, it follows from (9) that

(15)
$$\lambda_{h/s}^p = \sum_{i,j}^{1...n} \gamma_{hij} \lambda_i^p \lambda_{j,s}.$$

3. If all the roots of (5) are equal, we must have $\alpha_{rs} = \varrho g_{rs}$. Differentiating covariantly with respect to x^t , and making use of the fact that $g_{rs/t} = 0$ and the assumption that $\alpha_{rs/t} = 0$, we have that ϱ is constant. Consequently α_{rs} is essentially the same as g_{rs} . We exclude this case from further consideration.

Since (7) is satisfied whether the functions λ_h^r and λ_k^r correspond to different simple roots of (5), or to the same multiple root when such exists, we have from (6)

(16)
$$\alpha_{rs} \lambda_h^r \lambda_k^s = 0 \quad (h, k = 1, \ldots, n; h \neq k).$$

Also from (6) we have

(17)
$$\alpha_{rs} \lambda_h^r \lambda_h^s = \varrho_h.$$

From (17) we have by differentiating covariantly with respect to x^t and making use of (15), (16), and (17)

(18)
$$\alpha_{rs/t} \lambda_h^r \lambda_h^s = \frac{\partial \varrho_h}{\partial x^t}.$$

Also from (16) we have, because of (13), (14), (16) and (17),

$$\alpha_{rs/t} \lambda_h^r \lambda_k^s + \sum_{j=1}^{n} (\varrho_k - \varrho_h) \gamma_{hkj} \lambda_{j,t} = 0.$$

Multiplying by λ_l^t and summing for t, we have

(19)
$$\alpha_{rs/t} \lambda_h^r \lambda_k^s \lambda_l^t + (\varrho_k - \varrho_h) \gamma_{hkl} = 0 \qquad (h \neq k).$$

From (18) it follows that if $\alpha_{rs/t} = 0$ the roots ϱ are constant. And from (19) we have for two different roots

$$\gamma_{hkl} = 0 \qquad (h \neq k).$$

Let ϱ_1 be a root of (5) which we assume to be a multiple root of order m, and denote by λ_h^r $(h=1,\ldots,m)$ the components of the m mutually orthogonal vectors corresponding to it, and by λ_k^r $(k=m+1,\ldots,n)$ the components of the directions corresponding to the other roots of (5). From (20) we have

(21)
$$\gamma_{hkl} = 0$$
 $(h = 1, ..., m; k = m+1, ..., n; l = 1, ..., n).$

Consider the system of equations

(22)
$$X_{k}(f) \equiv \lambda_{k}^{r} \frac{\partial f}{\partial x^{r}} = 0 \quad (k = m+1, \ldots, n).$$

If we introduce the notation

$$\frac{\partial f}{\partial s^k} = \lambda_k^r \frac{\partial f}{\partial x^r},$$

then, as Ricci and Levi-Civita have shown*, the relation

(23)
$$\frac{\partial}{\partial s_{i}} \frac{\partial f}{\partial s_{k}} - \frac{\partial}{\partial s_{k}} \frac{\partial f}{\partial s_{j}} = \sum_{i}^{n} (\gamma_{ijk} - \gamma_{ikj}) \frac{\partial f}{\partial s_{i}}$$

is satisfied for any function f.

Applying this formula to equations (22) we have in consequence of (21)

$$X_j X_k(f) - X_k X_j(f) = \sum_{i=1}^{m+1...n} (\gamma_{ijk} - \gamma_{ikj}) X_i(f)$$
 $(j, k = m+1, ..., n).$

Hence the system (22) is complete and admits m independent solutions, say $f_h(h=1,\ldots,m)$.

^{*} Loc. cit., p. 150; Wright, p. 69.

Let ϱ_2 be another root of (5), of order p, and denote by λ_j^r $(j=m+1,\ldots,m+p)$ the components of the corresponding vectors. In like manner we show that the equations

$$\lambda_l^r \frac{\partial f}{\partial x^r} = 0$$
 $(l = 1, ..., m, m + p + 1, ..., n)$

form a complete system and admit p independent solutions f_j $(j = m+1, \ldots, m+p)$.

From (22) and the equations

$$\lambda_k^r \lambda_{h,r} = 0 \qquad (h = 1, \ldots, m; k = m+1, \ldots, n)$$

it follows that there exist functions a_h^{σ} such that

$$\frac{\partial f_h}{\partial x^r} = \sum_{\sigma} a_h^{\sigma} \lambda_{\sigma,r} \qquad (h, \sigma = 1, \ldots, m).$$

In like manner, we have

$$\frac{\partial f_j}{\partial x^r} = \sum_{\tau} b_j^{\tau} \lambda_{\tau,r} \qquad (j, \tau = m+1, \ldots, m+p).$$

Consequently we have

$$g^{rs} rac{\partial f_h}{\partial x^r} rac{\partial f_j}{\partial x^s} = \sum_{m{\sigma},m{ au}} a^{m{\sigma}}_h b^{m{ au}}_j g^{rs} \lambda_{m{\sigma},r} \lambda_{m{ au},s} = 0,$$

that is, any hypersurface $f_h = \text{const.}$ is orthogonal to each of the hypersurfaces $f_i = \text{const.}$

Proceeding in this manner with the other roots of (5) we obtain a group of hypersurfaces corresponding to each distinct root of (5), the number of hypersurfaces in a group being equal to the order of the root. Any two hypersurfaces of two different groups are orthogonal to one another. If we take these n families of hypersurfaces for the parametric surfaces $x^r = \text{const.}$ $(r = 1, \ldots, n)$, it follows that the functions g_{rs} are zero, for the case where $x^r = \text{const.}$ and $x^s = \text{const.}$ are hypersurfaces of different groups; in this sense we say that r and s refer to different groups, or different roots of (5).

From the equations (22) for this choice of the variables x, it follows that $\lambda_k^r = 0$, for r and k referring to different roots of (5). From (9) it follows also that $\lambda_{k,r} = 0$ for k and r referring to different roots.

Equations (6) may be replaced by*

(24)
$$a_{rs} = \sum_{h}^{1...n} \varrho_h \lambda_{h,r} \lambda_{h,s}$$

whether the roots of (5) are simple, or some are multiple. From (24) and the preceding observations it follows

(25)
$$\alpha_{rs'} = g_{rs'} = 0,$$

$$\alpha_{rs} = \varrho_h g_{rs},$$

where r and s' refer to any two different roots and r and s refer to the root ϱ_h .†

4. From (25) we have $\alpha_{rs'} = 0$, hence if $\alpha_{rs'/t} = 0$, we must have (cf. (2))

$$\alpha_{rl} \Gamma_{s't}^l + \alpha_{s'q} \Gamma_{rt}^q = 0$$
 $(l, q = 1, \ldots, n),$

that is

$$\alpha_{rl} g^{l\rho} \left[\frac{\partial g_{s'\rho}}{\partial x^t} + \frac{\partial g_{t\rho}}{\partial x^{s'}} - \frac{\partial g_{s't}}{\partial x^{\rho}} \right] + \alpha_{s'q} g^{q\rho} \left[\frac{\partial g_{r\rho}}{\partial x^t} + \frac{\partial g_{t\rho}}{\partial x^r} - \frac{\partial g_{rt}}{\partial x^{\rho}} \right] = 0.$$

If r refers to the root ϱ_1 of (5), say $r = 1, \ldots, m$ and s' to the root ϱ_2 , say $s' = m + 1, \ldots, m + p$, we have from (25)

$$egin{align} lpha_{rl} &= arrho_1 g_{rl} & (l=1,\ldots,m); \\ lpha_{rl} &= 0 & (l=m+1,\ldots,n); \\ lpha_{s'q} &= arrho_2 g_{s'q} & (q=m+1,\ldots,m+p); \\ lpha_{s'q} &= 0 & (q=1,\ldots,m,m+p+1,\ldots,n). \end{array}$$

Hence the above equation reduces to

$$\varrho_{1}\left(\frac{\partial g_{s'r}}{\partial x^{t}} + \frac{\partial g_{tr}}{\partial x'^{s}} - \frac{\partial g_{s't}}{\partial x^{r}}\right) + \varrho_{3}\left(\frac{\partial g_{rs'}}{\partial x^{t}} + \frac{\partial g_{ts'}}{\partial x^{s'}} - \frac{\partial g_{rt}}{\partial x^{s'}}\right) = 0.$$

^{*} Cf. Ricci and Levi-Civita, loc. cit., p. 159.

[†] Cf. Levi-Civita, Annali di Matematica, ser. 2, vol. 24 (1896), p. 298.

If now t and r refer to the same root, this equation reduces to

$$(\varrho_1-\varrho_2)\frac{\partial g_{tr}}{\partial x^{'s}}=0,$$

and if t and s' refer to the same root, we have

$$(\varrho_1-\varrho_2)\frac{\partial g_{s't'}}{\partial x''}=0.$$

If r, s' and t refer to three different roots, the equation vanishes identically. Since ϱ_1 and ϱ_2 are not equal by hypothesis, we have that each function g_{rs} depends only on the coordinates referring to the same root as r and s.

Consider again

$$\alpha_{rs} = \varrho_1 g_{rs} \qquad (r, s = 1, \ldots, m).$$

Now

$$\alpha_{rs/t} = \varrho_1 \frac{\partial g_{rs}}{\partial x^t} - \alpha_{rl} \Gamma_{st}^l - \alpha_{sl} \Gamma_{rt}^l \qquad (l = 1, ..., n),$$

which by (25) is reducible to

$$\alpha_{rs/t} = \varrho_1 \left(\frac{\partial g_{rs}}{\partial x^t} - g_{rl} \Gamma_{st}^l - g_{sl} \Gamma_{rt}^l \right) = \varrho_1 g_{rs/t} = 0.$$

Hence we have the following theorem:

A necessary and sufficient condition that a Riemann space admit a symmetric covariant tensor of the second order a_{rs} other than, with a positive definite fundamental form (1), g_{rs} , such that its first covariant derivative is zero, is that (1) be reducible to a sum of forms

(26)
$$\varphi^{(i)} = g_{r,s}^{(i)} dx^{r_i} dx^{s'},$$

where $g_{\tau,s_i}^{(i)}$ are functions at most of the x's of that form; then

(27)
$$\alpha_{rs} dx^{s} dx^{s} = \sum_{i} \varrho_{i} \varphi^{(i)},$$

where the e's are arbitrary constants.

In particular, if all the roots of (5) are simple, the space is euclidean; if its fundamental form is taken in the form

$$ds^2 = \sum_i dx^i \qquad (i = 1, \ldots, n),$$

then

$$\alpha_{rs} dx^r dx^s = \sum_i \varrho_i dx^i \qquad (i = 1, \ldots, n),$$

where the ϱ 's are n different arbitrary constants.

When any one of the roots of (5) is simple, the corresponding congruence is normal, and the tangents to the congruence form a field of parallel vectors in the sense of Levi-Civita.*

5. In this section it will be shown that the problem of determining whether a given Riemann space admits one, or more, symmetric tensors whose first covariant derivatives are zero is a problem of algebra.†

We recall that if α_{rs} is any symmetric tensor, then

$$\alpha_{rs/jk} - \alpha_{rs/kj} = \alpha_{rt} B_{sjk}^t + \alpha_{st} B_{rjk}^t,$$

where $\alpha_{rs/jk}$ is the second covariant derivative of α_{rs} , and B^t_{sjk} are the components of the Riemann tensor of the second kind formed with respect to (1). If then $\alpha_{rs/j} = 0$, we must have

$$\alpha_{rs/jk} - \alpha_{rs/kj} = 0,$$

and consequently we have equations of the form

Differentiating these equations covariantly successively we have the sets of equations

^{*} Cf. Proceedings of the National Academy of Sciences, vol. 8 (1922), p. 211.

[†] Cf. Eisenhart and Veblen, Proceedings of the National Academy of Sciences, vol. 8 (1922), p. 23; also Veblen and Thomas, these Transactions, vol. 25 (1923).

Since g_{rs} satisfies (28) the systems (29) and (30) are satisfied by g_{rs} and consequently are algebraically consistent. From this it follows either that the functions g_{rs} are the only solution of (29) and (30), or that (29) and the first $l \geq 0$ sets of (30) admit a complete system of solutions g_{rs} and $\alpha_{rs}^{(1)}, \ldots, \alpha_{rs}^{(p)}$ which satisfy also the (l+1)th set of equations (30). In the latter case the general solution is of the form

(31)
$$a_{rs} = q^{(0)} q_{rs} + q^{(1)} a_{rs}^{(1)} + \cdots + q^{(p)} a_{rs}^{(p)}.$$

If any one of the functions $\alpha_{rs}^{(\sigma)}(\sigma=1,\ldots,p)$ is substituted in (29) and the first l sets of (30), and these equations are differentiated covariantly, we have, in consequence of the above requirement, that the functions $\alpha_{rs/m}^{(\sigma)}(\sigma=1,\ldots,p;\ m=1,\ldots,n)$ satisfy (29) and the first l sets of (30). Consequently we have

(32)
$$\alpha_{rolm}^{(\sigma)} = \lambda_m^{(\sigma_0)} g_{ro} + \lambda_m^{(\sigma_1)} \alpha_{ro}^{(1)} + \cdots + \lambda_m^{(\sigma_p)} \alpha_{ro}^{(p)},$$

where the p(p+1) vectors $\lambda_m^{(\sigma\beta)}$ ($\sigma=1,\ldots,p$; $\beta=0,1,\ldots,p$) must be such that the functions (32) shall satisfy (28). Substituting in these equations we find that the functions λ must satisfy the system

$$(33) \frac{\partial \lambda_p^{(\sigma\tau)}}{\partial x^q} - \frac{\partial \lambda_q^{(\sigma\tau)}}{\partial x^p} + \sum_{\omega} \left(\lambda_p^{(\tau\omega)} \lambda_q^{(\omega\tau)} - \lambda_q^{(\sigma\omega)} \lambda_p^{(\omega\tau)} \right) = 0 \quad {\sigma, \omega = 1, \dots, p \choose \tau = 0, 1, \dots, p}.$$

In order that α_{rs} given by (31) shall satisfy $\alpha_{rs/t} = 0$, it is necessary and sufficient that the functions $\varphi^{(i)}$ satisfy

(34)
$$\frac{\partial \varphi^{(0)}}{\partial x^t} + \sum_{\sigma} \varphi^{(\sigma)} \lambda_t^{(\sigma 0)} = 0 \qquad (\sigma = 1, \ldots, p),$$

and

(35)
$$\frac{\partial \varphi^{(\tau)}}{\partial x^t} + \sum_{\sigma} \varphi^{(\sigma)} \lambda_t^{(\sigma\tau)} = 0 \qquad (\sigma, \tau = 1, \dots, p).$$

In consequence of (33) equations (35) are completely integrable and therefore admit solutions involving p arbitrary constants. Because of (33) the conditions of integrability of (34) are satisfied; hence $\varphi^{(0)}$ involves these p arbitrary constants and an additive arbitrary constant which may be neglected.*

^{*} If a_{re} is a tensor whose first covariant derivative is zero, so also is $a_{re} + \lambda g_{re}$, where λ is an arbitrary constant.

In view of the above results we have the theorem:

If equations (29) and the first $l(\geq 0)$ sets of equations (30) admit a complete system of solutions g_{rs} and $\alpha_{rs}^{(\sigma)}(\sigma=1,\ldots,p)$ which are also solutions of the (l+1)th set of equations (30), there exists a symmetric tensor of the second order, involving p arbitrary constants, whose first covariant derivative is zero.

6. Suppose that the fundamental form is the sum of j forms (26). By definition

$$B_{pvs}^a = g^{aq} B_{pors},$$

where B_{pqrs} is the covariant Riemann tensor of the fourth order, that is,

$$B_{pqrs} = \frac{1}{2} \left(\frac{\partial^{2} g_{ps}}{\partial x^{q} \partial x^{r}} + \frac{\partial^{2} g_{qr}}{\partial x^{p} \partial x^{s}} - \frac{\partial^{2} g_{pr}}{\partial x^{q} \partial x^{s}} - \frac{\partial^{2} g_{qs}}{\partial x^{p} \partial x^{r}} \right) + g^{lm} \left(\Gamma_{ps, m} \Gamma_{qr, l} - \Gamma_{pr, m} \Gamma_{qs, l} \right),$$
(37)

where

(38)
$$\Gamma_{ps, m} = \frac{1}{2} \left(\frac{\partial g_{pm}}{\partial x^s} + \frac{\partial g_{sm}}{\partial x^p} - \frac{\partial g_{ps}}{\partial x^m} \right).$$

For the case under consideration, namely (26), it is readily shown that the components B_{pqrs} are zero, unless p,q,r,s refer to the same root of (5); likewise B_{prs}^a , and its first covariant derivatives $B_{prs/t}^a$. Consequently equations (29) and the first set of (30) admit, in addition to g_{rs} , the j sets of solutions of the form (25). If it is understood that each of the forms (26) is not further reducible to sums of such forms, we have a complete set of solutions of (29). Hence when the space is referred to the coördinates giving (25) the number l in the preceding theorem is zero.

PRINCETON UNIVERSITY, PRINCETON, N. J.